Abstract

Three new metabolites, microsphaeropsones A-C (1-3) with a unique oxepino[2,3-b]chromen-6-one (ring-enlarged xanthone) skeleton, were isolated from the endophytic fungus Microsphaeropsis species, co-occurring with their putative biogenetic anthraquinoide precursors citreorosein (4) and emodin (5). From another Microsphaeropsis species, large amounts of fusidienol A (8 a), smaller amounts of emodin (5), the known aromatic xanthones 9 a and 9 b, the new 3,4-dihydrofusidienol A (8 b), and the new aromatic xanthone 9 c were isolated. The endophyte Seimatosporium species produced a new aromatic xanthone, seimatoxanthone A (10), and 3,4-dihydroglobosuxanthone A (12), closely related to alpha-diversolonic ester (13) from Microdiplodia sp.. The structures were determined mainly by extensive 1D and 2D NMR experiments and supported by X-ray single-crystal analysis of 1 and the oxidation product 7. The absolute configurations of the microsphaeropsones A-C (1-3) were established by comparison of the electronic and vibrational circular dichroism (ECD and VCD) spectra of 1 with time-dependent DFT (TDDFT) and DFT calculations by using either the solid-state structures or DFT-optimized geometries as inputs. Preliminary studies indicated that 1, 2, and enone 7 showed antibacterial, fungicidal, and algicidal properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.