Abstract
Abstract Regular vine sequences permit the organization of variables in a random vector along a sequence of trees. Vine-based dependence models have become greatly popular as a way to combine arbitrary bivariate copulas into higher-dimensional ones, offering flexibility, parsimony, and tractability. In this project, we use regular vine sequences to decompose and construct the exponent measure density of a multivariate extreme value distribution, or, equivalently, the tail copula density. Although these densities pose theoretical challenges due to their infinite mass, their homogeneity property offers simplifications. The theory sheds new light on existing parametric families and facilitates the construction of new ones, called X-vines. Computations proceed via recursive formulas in terms of bivariate model components. We develop simulation algorithms for X-vine multivariate Pareto distributions as well as methods for parameter estimation and model selection on the basis of threshold exceedances. The methods are illustrated by Monte Carlo experiments and a case study on US flight delay data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.