Abstract

The structure of the X-ray photoelectron, X-ray O(F)Ka-emission spectra from ThO2 and ThF4 as well as the Auger OKLL spectra from ThO2 was studied. The spectral structure was analyzed by using fully relativistic cluster discrete variational calculations of the electronic structure of the ThO8 D4h) and ThF8 (C2) clusters reflecting thorium close environment in solid ThO2 and ThF4. As a result it was theoretically found and experimentally confirmed that during the chemical bond formation the filled O(F)2p electronic states are distributed mainly in the binding energy range of the outer valence molecular orbitals from 0-13 eV, while the filled O(F)2s electronic states - in the binding energy range of the inner valence molecular orbitals from 13-35 eV. It was shown that the Auger OKLL spectral structure from ThO2 characterizes not only the O2p electronic state density distribution, but also the O2s electronic state density distribution. It agrees with the suggestion that O2s electrons participate in formation of the inner valence molecular orbitals, in the binding energy range of 13-35 eV. The relative Auger OKL2-3L2-3 peak intensity was shown to reflect quantitatively the O2p electronic state density of the oxygen ion in ThO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.