Abstract

Micro computed tomography (µCT) allows the noninvasive visualization and 3D reconstruction of internal structures of objects with high resolution. However, the current commercial µCT system relatively rotates the source-detector or objects to collect projections, referred as RCT in this paper, and has difficulties in imaging large objects with high resolutions because fabrication of large-area, inexpensive flat-panel detectors remains a challenge. In this paper, we proposed a source translation based CT (STCT) for imaging large objects with high resolution to get rid of the limitation of the detector size, where the field of view is primarily determined by the source translation distance. To compensate for the deficiency of incomplete data in STCT, we introduced multi-scanning STCT (mSTCT), from which the projections theoretically meet the conditions required for accurate reconstructions. Theoretical and numerical studies showed that mSTCT has the ability to accurately image large objects without any visible artifacts. Numerical simulations also indicated that mSTCT has a potential capability to precisely image the region of interest (ROI) inside objects, which remains a challenge in RCT due to truncated projections. In addition, an experimental platform for mSTCT has been established, from which the 2D and 3D reconstructed results demonstrated its feasibility for µCT applications. Moreover, STCT also has a great potential for security inspection and product screening by using two perpendicular STCTs, with advantages of low-cost equipment and high-speed examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.