Abstract

The dynamic range of an X-ray digital imaging system is very important when detecting objects with a high absorption ratio. In this paper, a ray source filter is used to filter the low-energy ray components which have no penetrating power to the high absorptivity object to reduce the X-ray integral intensity. This enables the effective imaging of the high absorptivity objects and avoids the image saturation of low absorptivity objects, thus achieving single exposure imaging of high absorption ratio objects. However, this method will reduce the image contrast and weaken the image structure information. Therefore, this paper proposes a contrast enhancement method for X-ray images based on Retinex. Firstly, based on Retinex theory, the multi-scale residual decomposition network decomposes the image into an illumination component and a reflection component. Then, the contrast of the illumination component is enhanced through the U-Net model with the global-local attention mechanism, and the reflection component is enhanced in detail using the anisotropic diffused residual dense network. Finally, the enhanced illumination component and the reflected component are fused. The results show that the proposed method can effectively enhance the contrast in X-ray single exposure images of the high absorption ratio objects, and can fully display the structure information of images on devices with low dynamic range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.