Abstract
A general least-squares technique for X-ray diffraction line broadening analysis has been developed. The technique can be used to determine single, double, and triple line broadening effects caused by small particle sizes, microstrain, stacking faults, or all three presented in a closed-packed hexagonal nanomaterial. The technique was applied to characterize the microstructure of β-Ni(OH)2, a negative electrode material in nickel-metal hydride (NiMH) batteries. Double line broadening effects caused by both small crystallite sizes and stacking faults in β-Ni(OH)2 were detected and analyzed. Triple line broadening effects caused simultaneously by small crystallite sizes, microstrain, and stacking faults were detected in β-Ni(OH)2 after activation and charge-discharge cycle tests. The triple line broadening effects were found to be selective and most pronounced for diffraction lines with h−k=3n±1. The broadening effects were larger when l=even, but smaller when l=odd. The shape and the average size of the crystallites, microstrain, and stacking fault probability in β-Ni(OH)2 changed dramatically after activation and charge-discharge cycles. The method was also applied to characterize and investigate the microstructure of nano ZnO materials. Results indicate that no selective broadening appears in the XRD patterns of the nano ZnO materials. The average crystallite sizes were different slightly, and the stacking fault probabilities differed significantly with different dopants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.