Abstract

We present a large-scale study of the X-ray properties and near-IR-to-radio SEDs of submillimetre galaxies (SMGs) detected at 1.1mm with the AzTEC instrument across a ~1.2 square degree area of the sky. Combining deep 2-4 Ms Chandra data with Spitzer IRAC/MIPS and VLA data within the GOODS-N/S and COSMOS fields, we find evidence for AGN activity in ~14 percent of 271 AzTEC SMGs, ~28 percent considering only the two GOODS fields. Through X-ray spectral modeling and SED fitting using Monte Carlo Markov Chain techniques to Siebenmorgen et al. (2004) (AGN) and Efstathiou et al. (2000) (starburst) templates, we find that while star formation dominates the IR emission, with SFRs ~100-1000 M_sun/yr, the X-ray emission for most sources is almost exclusively from obscured AGNs, with column densities in excess of 10^23 cm^-2. Only for ~6 percent of our sources do we find an X-ray-derived SFR consistent with NIR-to-radio SED derived SFRs. Inclusion of the X-ray luminosities as a prior to the NIR-to-radio SED effectively sets the AGN luminosity and SFR, preventing significant contribution from the AGN template. Our SED modeling further shows that the AGN and starburst templates typically lack the required 1.1 mm emission necessary to match observations, arguing for an extended, cool dust component. The cross correlation function between the full samples of X-ray sources and SMGs in these fields does not indicate a strong correlation between the two populations at large scales, suggesting that SMGs and AGNs do not necessarily trace the same underlying large scale structure. Combined with the remaining X-ray-dim SMGs, this suggests that sub-mm bright sources may evolve along multiple tracks, with X-ray-detected SMGs representing transitionary objects between periods of high star formation and AGN activity while X-ray-faint SMGs represent a brief starburst phase of more normal galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.