Abstract

Abstract The X-ray absorption spectra of the 3d and 4d transition metals have been calculated within the single-particle approximation by a new linearized augmented plane wave method. The spectra, calculated with sharp atomic and band-structure single-particle levels, have been convoluted with a Lorentzian broadening function whose width is the sum of that of the core hole and the excited electrons. Plots are shown for (i) the K-edge fine structures up to at least 100 eV above the edge for Ca, Ti, Cr, Co, Cu, and Zn, (ii) the L2, 3 white lines for Ca, Ti, Cr, Co, and Cu, (iii) the L3 white lines for Sr, Zr, Nb, Ru, Rh, and Pd, and (iv) the M2, 3 and M4,5 spectrum of Pd. Systematic features which depend on the crystal structure and the placement of the Fermi level with conduction band are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.