Abstract

The diagnostic technique of x-ray absorption imaging of Hg vapour in high-intensity discharge lamps has been extended. X-ray absorption imaging has been used previously to determine the time-averaged absolute Hg density (Curry J J, Sakai M and Lawler J E 1998 J. Appl. Phys. 84 3066). Now, using an intensified charge-coupled device detector and synchrotron radiation, time-resolved measurements have been made. Although no significant time-dependence was seen as a function of the electrical phase for an electronically ballasted lamp, real-time observations were made of the decaying Hg density during the cool-down period. The cold-spot temperature in a 150 W ceramic lamp containing Hg and rare-earth iodides decreased with a time constant of 48.4 s following arc extinction. The primary limitation to the sensitivity of these measurements has been identified, and methods for overcoming this limitation in future work are proposed. Other aspects of the technique are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.