Wrapping of Nano- and Microgels by Lipid-Bilayer Membranes.
The wrapping of nano- and microparticles is a fundamentally important pathway for their cellular uptake and depends on the physicochemical properties of both particle and membrane. Polymeric gels are a versatile class of materials whose elastic properties can be tuned in a wide range from ultrasoft to hard by changing the density of cross-linkers. Using spring networks for the microgels and triangulated surfaces for the membranes, we study microgel wrapping with computer simulations. The interplay of microgel and membrane deformation is controlled by the competition between microgel elasticity and membrane bending rigidity. Compared with hard particles, the range of adhesion strengths for which partial-wrapped states are stable is enlarged. Volume and surface area of partial-wrapped microgels can be significantly reduced compared with those of free microgels. Understanding microgel wrapping can help us to design polymeric particles for biomedical applications, e.g., as membrane markers and targeted drug delivery vectors.
- Research Article
5
- 10.3791/62396
- May 27, 2021
- Journal of Visualized Experiments
Lipid bilayers form the main matrix of cell membranes and are the primary platform for nutrient exchange, protein-membraneinteractions, and viral budding, among other vital cellular processes. For efficient biological activity, cell membranes should be rigid enough to maintain the integrity of the cell and its compartments yet fluid enough to allow membrane components, such as proteins and functional domains, to diffuse and interact. This delicate balance of elastic and fluid membrane properties, and their impact on biological function, necessitate a better understanding of collective membrane dynamics over mesoscopic length and time scales of key biological processes, e.g., membrane deformations and protein binding events. Among the techniques that can effectively probe this dynamic range is neutron spin echo (NSE) spectroscopy. Combined with deuterium labeling, NSE can be used to directly access bending and thickness fluctuations as well as mesoscopic dynamics of select membrane features. This paper provides a brief description of the NSE technique and outlines the procedures for performing NSE experiments on liposomal membranes, including details of sample preparation and deuteration schemes, along with instructions for data collection and reduction. The paper also introduces data analysis methods used to extract key membrane parameters, such as the bending rigidity modulus, area compressibility modulus, and in-plane viscosity. To illustrate the biological importance of NSE studies, select examples of membrane phenomena probed by NSE are discussed, namely, the effect of additives on membrane bending rigidity, the impact of domain formation on membrane fluctuations, and the dynamic signature of membrane-protein interactions.
- Research Article
13
- 10.1073/pnas.2217534120
- Jul 17, 2023
- Proceedings of the National Academy of Sciences
Cellular engulfment and uptake of macromolecular assemblies or nanoparticles via endocytosis can be associated to both healthy and disease-related biological processes as well as delivery of drug nanoparticles and potential nanotoxicity of pollutants. Depending on the physical and chemical properties of the system, the adsorbed particles may remain at the membrane surface, become wrapped by the membrane, or translocate across the membrane through an endocytosis-like process. In this paper, we address the question of how the wrapping of colloidal particles by lipid membranes can be controlled by the shape of the particles, the particle-membrane adhesion energy, the membrane phase behavior, and the membrane-bending rigidity. We use a model system composed of soft core-shell microgel particles with spherical and ellipsoidal shapes, together with phospholipid membranes with varying composition. Confocal microscopy data clearly demonstrate how tuning of these basic properties of particles and membranes can be used to direct wrapping and membrane deformation and the organization of the particles at the membrane. The deep-wrapped states are more favorable for ellipsoidal than for spherical microgel particles of similar volume. Theoretical calculations for fixed adhesion strength predict the opposite behavior-wrapping becomes more difficult with increasing aspect ratio. The comparison with the experiments implies that the microgel adhesion strength must increase with increasing particle stretching. Considering the versatility offered by microgels systems to be synthesized with different shapes, functionalizations, and mechanical properties, the present findings further inspire future studies involving nanoparticle-membrane interactions relevant for the design of novel biomaterials and therapeutic applications.
- Research Article
12
- 10.1039/d3sm00882g
- Jan 1, 2023
- Soft Matter
This review provides an overview of the latest developments in both experimental and simulation techniques used to assess the bending rigidity of lipid membranes. It places special emphasis on experimental methods that utilize model vesicles to manipulate lipid compositions and other experimental parameters to determine the bending rigidity of the membrane. It also describes two commonly used simulation methods for estimating bending rigidity. The impact of various factors on membrane bending rigidity is summarized, including cholesterol, lipids, salt concentration, surface charge, membrane phase state, peptides, proteins, and polyethylene glycol. These factors are shown to influence the bending rigidity, contributing to a better understanding of the biophysical properties of membranes and their role in biological processes. Furthermore, the review discusses future directions and potential advancements in this research field, highlighting areas where further investigation is required.
- Research Article
47
- 10.1016/0021-9797(68)90104-5
- Aug 1, 1968
- Journal of Colloid and Interface Science
Permeation of water through bilayer lipid membranes
- Research Article
99
- 10.1073/pnas.0502183102
- Jul 29, 2005
- Proceedings of the National Academy of Sciences
Intermolecular interactions between charged membranes and biological polyelectrolytes, tuned by physical parameters, which include the membrane charge density and bending rigidity, the membrane spontaneous curvature, the biopolymer curvature, and the overall charge of the complex, lead to distinct structures and morphologies. The self-assembly of cationic liposome-microtubule (MT) complexes was studied, using synchrotron x-ray scattering and electron microscopy. Vesicles were found to either adsorb onto MTs, forming a "beads on a rod" structure, or undergo a wetting transition and coating the MT. Tubulin oligomers then coat the external lipid layer, forming a tunable lipid-protein nanotube. The beads on a rod structure is a kinetically trapped state. The energy barrier between the states depends on the membrane bending rigidity and charge density. By controlling the cationic lipid/tubulin stoichiometry it is possible to switch between two states of nanotubes with either open ends or closed ends with lipid caps, a process that forms the basis for controlled chemical and drug encapsulation and release.
- Abstract
- 10.1016/j.bpj.2014.11.124
- Jan 1, 2015
- Biophysical Journal
How GM1 Affects the Phase State and Mechanical Properties of Phospholipid Membranes
- Research Article
- 10.1039/d5sm00150a
- Jan 1, 2025
- Soft matter
The wrapping of particles and vesicles by lipid bilayer membranes is a fundamental process in cellular transport and targeted drug delivery. Here, we investigate the wrapping behavior of nonspherical vesicles, such as ellipsoidal, prolate, oblate, and stomatocytes, by systematically varying the bending rigidity of the vesicle membrane and the tension of the initially planar membrane. Using the Helfrich Hamiltonian, triangulated membrane models, and energy minimization techniques, we predict multiple stable-wrapped states and identify the conditions for their coexistence. Our results demonstrate that softer vesicles bind more easily to initially planar membranes; however, complete wrapping requires significantly higher adhesion strength than rigid vesicles. As membrane tension increases, deep-wrapped states disappear at a triple point where shallow-wrapped, deep-wrapped, and complete-wrapped states coexist. The coordinates of the triple point are highly sensitive to the vesicle shape and stiffness. For stomatocytes, increasing stiffness shifts the triple point to higher adhesion strengths and membrane tensions, while for oblates, it shifts to lower values, influenced by shape changes during wrapping. Oblate shapes are preferred in shallow-wrapped states and stomatocytes in deep-wrapped states. In contrast to hard particles, where optimal adhesion strength for complete wrapping occurs at tensionless membranes, complete wrapping of soft vesicles requires finite membrane tension for optimal adhesion strength. These findings provide insights into the interplay between vesicle deformability, shape, and membrane properties, advancing our understanding of endocytosis and the design of advanced biomimetic delivery systems.
- Abstract
- 10.1016/j.bpj.2015.11.2233
- Feb 1, 2016
- Biophysical Journal
Influence of Charge on the Elastic Properties of Lipid Membranes
- Dissertation
- 10.18174/387982
- Sep 13, 2016
There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively stabilized against Ostwald ripening and coalescence. A drawback of the use of hard particles as interfacial stabilizers is that they often experience a pronounced energy barrier for interfacial adsorption and that hard particles are very specific with regard to the type of fluid interface they can adsorb to. Soft particles, on the other hand, are known as good stabilizers against coalescence and they spontaneously adsorb to a variety of different fluid interfaces. The aim of this thesis was to investigate core-shell particles comprising a hard core and soft shell with regard to their interfacial behaviour and their ability to act as sole stabilizers for foams and emulsions. We hypothesised that the presence of the soft shell allows for easier interfacial adsorption of core-shell particles compared to the hard core particles only. To test this hypothesis, we prepared core-shell particles comprising a solid polystyrene (PS) core and a soft poly-N-isopropylacrylamide (PNIPAM) shell. To ascertain the effect of shell thickness, we prepared a range of core-shell particles with different shell thicknesses, containing identical core particles. We found that core-shell particles are intrinsically surface active and can generate high surface pressures at the air-water interface and oil-water interfaces, whereas core particles seemed to experience a large energy barrier for interfacial adsorption and did not lower the surface tension. We also confirmed by microscopy that core-shell particles are actually adsorbing to the fluid interface and form densely packed interfacial layers. Further, we found that a certain critical thickness of the soft shell is necessary in order to ensure facile interfacial adsorption. If the PNIPAM shell on top of the core particles is well above 100nm thick, particle adsorption at the air-water interface was found to be diffusion limited. By gentle hand-shaking we were able to produce dispersion of air bubbles and emulsion droplets solely stabilized by core-shell particles. The resulting bubbles still underwent Ostwald ripening, albeit slowly. For oil-in-water emulsions of hexane and toluene, both of which have a relatively high solubility in the continuous phase, we found that core-shell particles can stop Ostwald ripening. The resulting emulsion droplets adopted pronounced non-spherical shapes, indicating a high elasticity of the interface. The high stability and the remarkable non-spherical shape of the emulsion droplets stabilized by core-shell particles were features we also observed for fluid dispersion stabilized by hard particles. This shows that in terms of emulsion stability core-shell particles behave similar to hard particles as interfacial stabilizer. As to why the differences between the stability of bubble and oil dispersions arise could not be finally answered. Yet, microscopic analysis of the interfacial configuration of core-shell particles at the air-water interface reveals some peculiar insights which may suggest that core-shell particles adsorb in a polymer-like fashion with the soft PNIPAM shells adsorbing to the air-water interface only, while the hard PS cores reside in the continuous phase. In summary, we showed that core-shell particles with a hard core and a soft shell can indeed combine the advantageous properties of hard and soft particles. The soft shell enables spontaneous adsorption to a variety of fluid interfaces. Despite their spontaneous adsorption, core-shell particles strongly anchor and do not spontaneously desorb from the fluid interface again. Further, the hard core provides enough rigidity to the core-shell particles to allow the establishment of a stress bearing interfacial particle network. This network eventually stops Ostwald ripening in oil-in-water emulsions. Our results therefore show that in the case of oil-water interfaces, core-shell particles can perform better than solely hard particles as interfacial stabilizers.
- Research Article
159
- 10.1021/ar500051r
- May 14, 2014
- Accounts of Chemical Research
CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on membranes and can dynamically associate into higher order complexes. Hydrophobic modification of DNA nanostructures can further result in intra- or intermolecular aggregation, which can also be utilized as a structural switching mechanism. Appropriate design and chemical modification even allows insertion of DNA nanostructures into lipid bilayer membranes, resulting in artificial ion channel mimics made from DNA. Interactions of DNA nanodevices with living cells also involve interactions with membrane structures. DNA-based nanostructures can be directed to cell surfaces via antibody-antigen interactions, and their cellular uptake can be stimulated by modification with appropriate receptor ligands. In the future, membrane-embedded DNA nanostructures are expected to find application in diverse areas ranging from basic biological research over nanotechnology to synthetic biology.
- Research Article
180
- 10.1016/s0022-2275(20)33861-x
- May 1, 1998
- Journal of Lipid Research
Small angle X-ray diffraction was used to examine arterial smooth muscle cell (SMC) plasma membranes isolated from control and cholesterol-fed (2%) atherosclerotic rabbits. A microsomal membrane enriched with plasma membrane obtained from animals fed cholesterol for up to 13 weeks showed a progressive elevation in the membrane unesterified (free) cholesterol:phospholipid (C/PL) mole ratio. Beyond 9 weeks of cholesterol feeding, X-ray diffraction patterns demonstrated a lateral immiscible cholesterol domain at 37 degrees C with a unit cell periodicity of 34 A coexisting within the liquid crystalline lipid bilayer. On warming, the immiscible cholesterol domain disappeared, and on cooling it reappeared, indicating that the immiscible cholesterol domain was fully reversible. These effects were reproduced in a model C/PL binary lipid system. In rabbits fed cholesterol for less than 9 weeks, lesser increases in membrane C/PL mole ratio were observed. X-ray diffraction analysis demonstrated an increase in membrane bilayer width that correlated with the C/PL mole ratio. This effect was also reproduced in a C/PL binary lipid system. Taken together, these findings demonstrate that in vivo, feeding of cholesterol causes cholesterol-phospholipid interactions in the membrane bilayer that alter bilayer structure and organization. This interaction results in an increase in bilayer width peaking at a saturating membrane cholesterol concentration, beyond which lateral phase separation occurs resulting in the formation of separate cholesterol bilayer domains. These alterations in structure and organization in SMC plasma membranes may have significance in phenotypic modulation or aortic SMC during early atherogenesis.
- Research Article
8
- 10.3970/mcb.2014.011.067
- Mar 1, 2014
- Molecular & cellular biomechanics : MCB
The motion and deformation of a single red blood cell flowing through a microvessel stenosis was investigated employing dissipative particle dynamics (DPD) method. The numerical model considers plasma, cytoplasm, the RBC membrane and the microvessel walls, in which a three dimensional coarse-grained spring RBC. The suspending plasma was modelled as an incompressible Newtonian fluid and the vessel walls were regarded as rigid body. The body force exerted on the free DPD particles was used to drive the flow. A modified bounce-back boundary condition was enforced on the membrane to guarantee the impenetrability. Adhesion of the cell to the stenosis vessel surface was mediated by the interactions between receptors and ligands. Firstly, the motion of a single RBC in a microfluidic channel was simulated and the results were found in agreement with the experimental data cited by [1]. Then the mechanical behavior of the RBC in the microvessel stenosis was studied. The effects of the bending rigidity of membrane, the size of the stenosis and the driven body force on the deformation and motion of red blood cell were discussed.
- Research Article
28
- 10.1016/j.bbamem.2020.183203
- Jan 22, 2020
- Biochimica et Biophysica Acta (BBA) - Biomembranes
Membrane stiffness is one of the key determinants of E. coli MscS channel mechanosensitivity
- Abstract
- 10.1016/j.bpj.2016.11.117
- Feb 1, 2017
- Biophysical Journal
Modeling Membrane Tubules with Lipid Droplets and Migrasomes
- Research Article
36
- 10.1103/physrevlett.108.228303
- Jun 1, 2012
- Physical Review Letters
We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young's modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly.
- New
- Research Article
- 10.1021/acsmacrolett.5c00682
- Nov 8, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00517
- Nov 8, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00453
- Nov 7, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00659
- Nov 7, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00537
- Nov 6, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00639
- Nov 5, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00565
- Nov 4, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00582
- Nov 4, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00653
- Nov 3, 2025
- ACS macro letters
- New
- Research Article
- 10.1021/acsmacrolett.5c00658
- Oct 31, 2025
- ACS macro letters
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.