Abstract

Wire wrapping is a traditional form of handmade jewelry that involves bending metal wire to create intricate shapes. The technique appeals to novices and casual crafters because of its low cost, accessibility and unique aesthetic. We present a computational design tool that addresses the two main challenges of creating 2D wire-wrapped jewelry: decomposing an input drawing into a set of wires, and bending the wires to give them shape. Our main contribution is an automatic wire decomposition algorithm that segments a drawing into a small number of wires based on aesthetic and fabrication principles. We formulate the task as a constrained graph labeling problem and present a stochastic optimization approach that produces good results for a variety of inputs. Given a decomposition, our system generates a 3D-printed custom support structure, or jig , that helps users bend the wire into the appropriate shape. We validated our wire decomposition algorithm against existing wire-wrapped designs, and used our end-to-end system to create new jewelry from clipart drawings. We also evaluated our approach with novice users, who were able to create various pieces of jewelry in less than half an hour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.