Abstract

We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remains the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions the wormhole metric in the context of conformal gravity does not violate the main energy conditions at or near the wormhole throat. Some exotic matter might still be needed at the junction between our solutions and flat spacetime, but we demonstrate that the averaged null energy condition (as evaluated along radial null geodesics) is satisfied for a particular set of wormhole geometries. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.