Abstract
<p><span lang="EN-US">Numerous applications are deployed on the web with the increasing popularity of internet. The applications include, 1) Banking applications,<br /> 2) Gaming applications, 3) E-commerce web applications. Different applications reply on OLTP (Online Transaction Processing) systems. OLTP systems need to be scalable and require fast response. Today modern web applications generate huge amount of the data which one particular machine and Relational databases cannot handle. The E-Commerce applications are facing the challenge of improving the scalability of the system. Data partitioning technique is used to improve the scalability of the system. The data is distributed among the different machines which results in increasing number of transactions. The work-load aware incremental repartitioning approach is used to balance the load among the partitions and to reduce the number of transactions that are distributed in nature. Hyper Graph Representation technique is used to represent the entire transactional workload in graph form. In this technique, frequently used items are collected and Grouped by using Fuzzy C-means Clustering Algorithm. Tuple Classification and Migration Algorithm is used for mapping clusters to partitions and after that tuples are migrated efficiently.</span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advances in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.