Abstract

Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and real-time applications in several areas, e.g., automotive, aerospace or industrial automation. However, many of these systems also have stringent security requirements, and security attacks may impair safety. Given a TSN-based distributed architecture, a set of applications with tasks and messages, as well as a set of security and redundancy requirements, we are interested to synthesize a system configuration such that the real-time, safety and security requirements are satisfied. We use the Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource multicast authentication protocol to guarantee the security requirements, and redundant disjunct message routes to tolerate link failures. We consider that the tasks are scheduled using static cyclic scheduling and that the messages use the time-sensitive traffic class in TSN, which relies on schedule tables (called Gate Control Lists, GCLs) in the network switches. A configuration consists of the schedule tables for tasks as well as the disjoint routes and GCLs for messages. We propose a Constraint Programming-based formulation for this problem and we evaluate it on several test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.