Abstract

Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

Highlights

  • Working memory can be described as a multifaceted limited-capacity information processing system, comprising interrelated attention and memory subsystems that govern the controlled processing of goal-relevant information over short periods of time and in light of interference or distraction from goal-irrelevant information (Baddeley and Hitch, 1974; Baddeley, 1986, 2000; Baddeley and Logie, 1999)

  • Individuals classified as having high or low Working memory capacity (WMC) with traditional dual span tasks differed in accuracy, RT, and rates of evidence accumulation on the redundant memory probes (RMP) task, groups did not differ in the magnitude of facilitation and inhibition effects observed under the RMP task

  • These results suggest redundant information reliably facilitates and inhibits the efficiency or speed of working memory visual search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory

Read more

Summary

Introduction

Working memory can be described as a multifaceted limited-capacity information processing system, comprising interrelated attention and memory subsystems that govern the controlled processing of goal-relevant information over short periods of time and in light of interference or distraction from goal-irrelevant information (Baddeley and Hitch, 1974; Baddeley, 1986, 2000; Baddeley and Logie, 1999). The present research assumed that if working memory governs the interaction between divided attention and short-term memory processes, tasks that tap both processes index more general working memory resources Following from this assumption, it was hypothesized that redundant target and distractor information presented during short-term memory search would yield classic redundancy gain and loss effects on decision-making accuracy and RT that can be attributed to facilitation and inhibition of working memory information processing efficiency or workload capacity. Based on previous working memory individual differences research, it was hypothesized that individuals with low WMC would show lower accuracy, slower mRT, smaller drift-rates, and be more susceptible to distractor information while processing target information than those with high WMC. We hypothesized that the magnitude of redundancy effects would depend on WMC individual differences, such that individuals with low WMC would show less redundancy gain and loss effects

Materials and Methods
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.