Abstract

AbstractIn recent years, the catalyst pellets made of open‐cell metallic foams have been identified as a promising alternative in fixed‐bed reactors. A reliable modeling tool is necessary to investigate the suitability of different foam properties and the shapes of foam pellets. In this article, a workflow for a detailed computational fluid dynamics (CFD) model is presented, which aims to study the flow characteristics in the slender packed beds made of metal foam pellets. The CFD model accounts for the actual random packing structure and the fluid flow throughout the interstitial regions is fully resolved, whereas flow through the porous foam pellets is represented by the closure equations for the porous media model. The bed structure is generated using rigid body dynamics (RBD) and the influence of the catalyst loading method is also considered. The mean bed voidage and the pressure drop predicted by the simulations show good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.