Abstract
We analyze theoretically the measurement of the mean output work and its fluctuations in a recently proposed optomechanical quantum heat engine [K. Zhang {\it et al.} Phys. Rev. Lett. {\bf112}, 150602 (2014)]. After showing that this work can be evaluated by a continuous measurements of the intracavity photon number we discuss both dispersive and absorptive measurement schemes and analyze their back-action effects on the efficiency of the engine. Both measurements are found to reduce the efficiency of the engine, but their back-action is both qualitatively and quantitatively different. For dispersive measurements the efficiency decreases as a result of the mixing of photonic and phononic excitations, while for absorptive measurements, its reduction results from photon losses due to the interaction with the quantum probe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.