Abstract

Existing approaches to higher-order vectorisation , also known as flattening nested data parallelism , do not preserve the asymptotic work complexity of the source program. Straightforward examples, such as sparse matrix-vector multiplication, can suffer a severe blow-up in both time and space, which limits the practicality of this method. We discuss why this problem arises, identify the mis-handling of index space transforms as the root cause, and present a solution using a refined representation of nested arrays. We have implemented this solution in Data Parallel Haskell (DPH) and present benchmarks showing that realistic programs, which used to suffer the blow-up, now have the correct asymptotic work complexity. In some cases, the asymptotic complexity of the vectorised program is even better than the original.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.