Abstract

Superwetting antiwater and antioil textiles are not only very attractive for efficient and cost-effective oil-water separation but also very challenging to be prepared. A well-designed polystyrene wool-like fibrous mesh was fabricated by a controlled electrospinning setup to provide simple and quick reversible ethanol-triggered switching between antiwater and antioil superwetting states in various media such as air, water, and oil. Additionally, it exhibits a long-term stability against acid, alkaline, and salt at high concentrations. Such characteristics will prove unusual capabilities for controllable gravity-driven separation of both immiscible and emulsified oil-water mixtures with a separation efficiency more than 99.0%, as well as a prolonged antifouling property and an excellent recyclability; all will be advantageous for technical applications including oil removing and water removing. Furthermore, light oil-polluted water and water-soluble pollutants can be simultaneously cleaned well by the antioil mesh acting in the water-removing mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.