Abstract

The use of wood hemicelluloses, including galactoglucomannans (GGM) and glucuronoxylans (GX), in spray-dried microencapsulation of bioactive compounds has not been reported. Our study aims to investigate the benefits of spray-dried GGM and GX powders (sGGM and sGX) along with the effects of homogenization techniques (magnetic stirring, ultrasonication, and a combination of UltraTurrax homogenization and microfluidization) on the physicochemical properties of feed solutions (10–20%, w/w). Feed solutions of bilberry juice with sGGM, sGX, and mixtures of either sGGM or sGX with methylcellulose (MC) or carboxymethylcellulose (CMC) were examined to produce highly stable feed solutions for spray-dried microencapsulation. The effects of ultrasonication amplitudes (30–80%) on the viscosity and particle size distribution of sGGM feed solutions were more profound than observed in their sGX counterparts. Unlike sGX feed solutions, sGGM feed solutions homogenized by ultrasonication and microfluidization formed a gel-like structure. Microfluidization also caused a loss of total anthocyanin content (TAC) of the feed solutions. Magnetic stirring resulted in no gel formation and in the lowest viscosity of the feed solutions; hence, it is an effective method for preparing hemicellulose feed solutions. sGGM and sGX powders have high heat stability with melting temperatures of 170–180 °C. The sGGM + CMC combination was more stable over 1 week of storage than the sGGM and sGX feed solutions. Storing the feed solutions reduced TAC and increased sGGM viscosity. Our results indicated that GGM and GX have high potential for use as wall materials in the spray-dried microencapsulation of bioactive compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.