Abstract

Abstract The orientation of galaxy spin vectors within the large-scale structure has been considered an important test of our understanding of structure formation. We investigate the angular changes of galaxy spin vectors in clusters—denser environments than are normally focused upon—using hydrodynamic zoomed simulations of 17 clusters YZiCS and a set of complementary controlled simulations. The magnitude by which galaxies change their spin vector is found to be a function of their rotational support, with larger cumulative angular changes of spin vectors when they have initially lower V θ /σ. We find that both mergers and tidal perturbations can significantly swing spin vectors, with larger changes in spin vector for smaller pericenter distances. Strong tidal perturbations are also correlated with the changes in stellar mass and specific angular momentum of satellite galaxies. However, changes in spin vector can often result in a canceling out of previous changes. As a result, the integrated angular change is always much larger than the angular change measured at any instant. Also, overall, the majority of satellite galaxies do not undergo mergers or sufficiently strong tidal perturbation after infall into clusters, and thus they end up suffering little change to their spin vectors. Taken as a whole, these results suggest that any signatures of spin alignment from the large-scale structure will be preserved in the cluster environment for many gigayears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.