Abstract
Wnt signaling plays a pivotal role in skeletal development and in the control of cartilage and bone turnover. We have recently shown that the secreted Wnt antagonist Wnt inhibitory factor 1 (WIF-1) is mainly expressed in the upper layers of epiphyseal and articular cartilage and, to a lesser extent, in bone. Nevertheless, WIF-1(-/-) mice develop normally. In light of these findings, we undertook this study to analyze the role of WIF-1 in arthritis. Expression analyses for WIF-1 were performed by real-time reverse transcription-polymerase chain reaction (RT-PCR). WIF-1(-/-) and tumor necrosis factor (TNF)-transgenic mice were crossbred, and the progression of arthritis in TNF-transgenic WIF-1(-/-) mice and littermate controls was evaluated. Structural joint damage was analyzed by histologic staining, histomorphometry, and micro-computed tomography. Wnt/β-catenin signaling was investigated by real-time RT-PCR and immunofluorescence on primary chondrocytes. WIF-1 expression was repressed by TNFα in chondrocytes and osteoblasts and down-regulated in experimental arthritis and in articular cartilage from patients with rheumatoid arthritis. WIF-1 deficiency partially protected TNF-transgenic mice against bone erosion and loss of trabecular bone, probably as a result of less osteoclast activity. In contrast, arthritis-related cartilage damage was aggravated by WIF-1 deficiency, while overexpression of WIF-1 attenuated cartilage degradation in TNF-transgenic mice. In chondrocytes, TNFα stimulated canonical Wnt signaling, which could be blocked by WIF-1, indicating a direct effect of TNFα and WIF-1 on Wnt signaling in this system. These data suggest that WIF-1 may take part in the fine-tuning of cartilage and bone turnover, promoting the balance of cartilage versus bone anabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.