Abstract

The epithelial Ca(2+) channel TRPV5 serves as a gatekeeper for active Ca(2+) reabsorption in the distal convoluted tubule and connecting tubule of the kidney. WNK4, a protein serine/threonine kinase with gene mutations that cause familial hyperkalemic hypertension (FHH), including a subtype with hypercalciuria, is also localized in the distal tubule of the nephron. To understand the role of WNK4 in modulation of Ca(2+) reabsorption, we evaluated the effect of WNK4 on TRPV5-mediated Ca(2+) transport in Xenopus laevis oocytes. Coexpression of TRPV5 with WNK4 resulted in a twofold increase in TRPV5-mediated Ca(2+) uptake. The increase in Ca(2+) uptake was due to the increase in surface expression of TRPV5. When the thiazide-sensitive Na(+)-Cl(-) cotransporter NCC was coexpressed, the effect of WNK4 on TRPV5 was weakened by NCC in a dose-dependent manner. Although the WNK4 disease-causing mutants E562K, D564A, Q565E, and R1185C retained their ability to upregulate TRPV5, the blocking effect of NCC was further strengthened when wild-type WNK4 was replaced by the Q565E mutant, which causes FHH with hypercalciuria. We conclude that WNK4 positively regulates TRPV5-mediated Ca(2+) transport and that the inhibitory effect of NCC on this process may be involved in the pathogenesis of hypercalciuria of FHH caused by gene mutation in WNK4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.