Abstract

[2,3]-Sigmatropic rearrangements (Wittig rearrangements) of α-alkoxy oxazolidinone enolates are described. Whereas alkali metal enolates fail, owing to facile deacylation, boron enolates generated from di-n-butylboron triflate and triethylamine rearranged in good yields and high selectivities with exceptions noted. IR and NMR spectroscopies show the boron is chelated by the α-alkoxy group rather than the more distal oxazolidinone carbonyl in the complex and enolate. The rearrangement product contains a boron alkoxide that remains unchelated by either carbonyl. Optimization was guided by density functional theory computations, suggesting that valine-derived oxazolidinones would be superior to the phenylalanine-derived analogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.