Abstract

Growing evidence suggests that mechanisms which regulate the Ca2+ sensitivity of the contractile apparatus in vascular smooth muscle cells form the backbone of pressure-induced myogenic vasoconstriction. The modulation of Ca2+ sensitivity is suited to partially uncouple intracellular Ca2+ from constriction, thereby allowing the maintenance of tone with fully conserved function of other Ca2+-dependent processes. Following a brief review of 'classical' Ca2+-dependent signalling pathways involved in the myogenic response, the present review describes the emerging mechanisms that promote myogenic vasoconstriction via modulation of Ca2+ sensitivity. For the purpose of this review, Ca2+ sensitivity reflects the dynamic equilibrium between myosin light-chain kinase and myosin light-chain phosphatase activities in terms of its impact on vascular tone. Several signalling pathways (PKC, RhoA/Rho kinase, ROS) which have been identified as prominent regulators of Ca2+ sensitivity will be discussed. Although Ca2+ sensitivity modulation is clearly an important component of the myogenic response, attempts to integrate it into existing mechanistic models resulted in a two-phase model, with a predominant Ca2+-dependent 'initiation/trigger' phase followed by a Ca2+-independent 'maintenance' phase. We propose that the two-phase model is rather simplistic, because the literature reviewed here demonstrates that Ca2+-dependent and -independent mechanisms do not operate in isolation and are important at all stages of the response. The regulation of Ca2+ sensitivity, as an equal and complimentary partner of Ca2+-dependent processes, significantly enhances our understanding of the complex array of signalling pathways, which ultimately mediate the myogenic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.