Abstract
Abstract The problem of phase retrieval has many applications in the field of optical imaging. Motivated by imaging experiments with biological specimens, we primarily consider the setting of low-dose illumination where Poisson noise plays the dominant role. In this paper, we discuss gradient descent algorithms based on different loss functions adapted to data affected by Poisson noise, in particular in the low-dose regime. Starting from the maximum log-likelihood function for the Poisson distribution, we investigate different regularizations and approximations of the problem to design an algorithm that meets the requirements that are faced in applications. In the course of this, we focus on low-count measurements. Based on an improved version of a variance-stabilizing transform for the Poisson distribution, we derive a decision rule for the regularization parameter in an averaged amplitude-based loss function. For all discussed loss functions, we study the convergence of the respective gradient descent algorithms to stationary points and find constant step sizes that guarantee descent of the loss in each iteration. Numerical experiments in the low-dose regime are performed to corroborate the theoretical observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.