Abstract

This is the second of a two-part investigation of the generation of wireless sensor network (WSN) configurations that: 1) maximize coverage of irregular shaped polygonal areas and 2) maintain a high degree of node connectivity. The first-part of the investigation presented centralized algorithms for the generation of mesh (wireless sensor) network configurations that maximize coverage and connectivity. In this second part, we present a decentralized and distributed approach using an Extended Virtual Spring Mesh (EVSM)-Adaptive Coverage Algorithm and Protocol (ACAP) algorithm. The EVSM-ACAP algorithm represents an extension of EVSM algorithm with the newly developed ACAP. ACAP provides adaptive coverage and configuration of the mesh network by dynamically adjusting the sensing range of sensor nodes. EVSM-ACAP is compared to centralized mesh generation algorithms (described in the part one of the investigation), as well as other decentralized algorithms from artificial physics, for the control of large numbers of physical agents in sensor networks. EVSM-ACAP is shown to produce a sensor network deployment with an average sensor spacing within 1.6% of the desired spacing, versus 5.75% for the best centralized algorithmic approach. To the best of our knowledge, this is the first time that these centralized mesh network configuration algorithms have been contrasted with the scalable, robust, decentralized algorithms of artificial physics and EVSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.