Abstract

This paper studies the secrecy communication in an orthogonal frequency division multiplexing (OFDM) system, where a source sends confidential information to a destination in the presence of a potential eavesdropper. We employ wireless powered cooperative jamming to improve the secrecy rate of this system with the assistance of a cooperative jammer, which works in the harvest-then-jam protocol over two time-slots. In the first slot, the source sends dedicated energy signals to power the jammer; in the second slot, the jammer uses the harvested energy to jam the eavesdropper, in order to protect the simultaneous secrecy communication from the source to the destination. In particular, we consider two types of receivers at the destination, namely Type-I and Type-II receivers, which do not have and have the capability of canceling the (a-priori known) jamming signals, respectively. For both types of receivers, we maximize the secrecy rate at the destination by jointly optimizing the transmit power allocation at the source and the jammer over sub-carriers, as well as the time allocation between the two time-slots. First, we present the globally optimal solution to this problem via the Lagrange dual method, which, however, is of high implementation complexity. Next, to balance tradeoff between the algorithm complexity and performance, we propose alternative low-complexity solutions based on minorization maximization and heuristic successive optimization, respectively. Simulation results show that the proposed approaches significantly improve the secrecy rate, as compared to benchmark schemes without joint power and time allocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.