Abstract
This paper presents a wireless energy transfer and a wireless data communication link for neural signal monitoring-more specifically, fast ripple detection for epilepsy patients. Wireless data are transferred on the same channel as the wireless energy transfer link by shifting resonance frequency of the implanted part. The remote powering link consists of a four-coil resonant inductive link structure and a power management unit on the implant side. Modulated information on the implant is demodulated using an envelope detector type amplitude shift keying demodulator in the external unit. Power transfer efficiency in air without data communication is measured as 36% for 10 mW output power at 8.4 MHz excitation frequency, while the external and the implanted coils are separated by 10 mm. Under the same experimental conditions, 1 Mbit/s data communication is achieved while maintaining a power transfer efficiency of 33%. Moreover, in-vitro tests employing mock cerebrospinal fluid are performed and 1 Mbit/s data communication is performed with an efficiency of 33% while all other parameters are preserved. Finally, hermetical sealing capability of the packaging that is composed of epoxy and Parylene-C is successfully tested for one month to evaluate the implant's short-term performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.