Abstract

A 3-D implementation of the finite-difference time-domain (FDTD) method is used to model 100–1000-MHz radio wave propagation in a generalized office building. Fire within this building is modeled as a cold plasma medium. The presence of fire is found to decrease the sector-averaged received power by up to 10 dB. The FDTD results also showing propagation through fire can introduce rotation in linearly polarized signals, increasing the power of cross-polarized components. Uncertainties in the plasma properties are modeled using nonintrusive polynomial chaos, and can introduce up to ±8 dB variation in the sectoraveraged power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.