Abstract

It is an important strategy to rationally design and construct specific-shaped microscopic nanostructures for developing poly-functional nanomaterials for different advanced applications. In this work, a novel technique combining a parallel electrospinning with a subsequent bi-crucible fluorination is advanced and utilized to facilely synthesize a brand-new peculiar one-dimensional (1D) wire-in-tube nanofiber//nanofiber shaped Janus nanofiber (WJNF) to refrain from usual complicated preparation procedures. Partition of four independent domains in the peculiar-structured Janus nanofiber is microscopically realized. The Janus nanofiber with four microscopic partitions can be applied to assemble various functions to avoid adverse mutual impacts among functions to realize multi-functionalization of the materials. As a case study, [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs with synchronous excellent upconversion luminescence and tunable magnetism are designed and constructed by the above technique. One side of the WJNF is composed of YF3:Yb3+, Er3+@SiO2 wire-in-tube nanofiber with YF3:Yb3+, Er3+ nanofiber as core layer and SiO2 as shell layer, and the other side is composed of CoFe2O4 magnetic nanofiber. YF3:Yb3+, Er3+ green upconversion luminescent nanofiber is completely separated from CoFe2O4 to fully avoid the weakening of luminescent intensity caused by the direct contact between luminescent and magnetic substances, and thus the luminescent intensity of [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs is apparently enhanced. Up-conversion luminescent intensity and magnetism of the WJNFs are modulated by tuning the contents of CoFe2O4. With the increase of CoFe2O4 content, the saturation magnetization of the WJNFs increases from 3.91 to 12.90 emu·g−1, revealing the tunable magnetism of the product. The formation mechanism of WJNFs is advanced, and a corresponding facile construction technique is established to shun complicated process, which provides theoretical guidance and technical support for the design and preparation of other poly-functional nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.