Abstract

ABSTRACTFrost‐seeding red clover (Trifolium pratense L.) into winter cereals is an efficient establishment method, although performance under contrasting soil management practices remains unclear. Wheat and intercropped red clover productivity were evaluated in intensive tillage (IT), moderate tillage (MT), and no tillage (NT) with and without compost amendment in a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.]–winter wheat (Triticum aestivum L.) and red clover rotation between 2005 and 2010. Wheat yields were not affected by tillage system and averaged 3.80 Mg ha−1 but were 10% higher in compost amended soil compared to no compost. Red clover plant density and dry matter (DM) at cereal grain harvest averaged 127 plants m−2 and 32 g m−2 and were not affected by tillage or amendment treatments. Maximum wheat canopy light interception was attained in late May to early June and ranged from 84 to 91% and typically exceeded 77% light interception for at least 22 d. Red clover root DM increased on average 378% between wheat harvest and 40 d after harvest compared with a 64% average increase in red clover root length. Red clover shoot:root averaged 8.5 at wheat harvest compared with 11.2 40 d after wheat harvest. Producers using this wheat and red clover intercrop should expect no difference in wheat yield or red clover productivity when using IT, MT, or NT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.