Abstract

Long-distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long-distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long-distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long-distance dispersers relative to non-dispersing individuals. In contrast, carry-over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high-quality winter territories were associated with higher mating and nesting success. These results suggest that although long-distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.