Abstract

Industrial wine making confronts viticulturalists, wine makers, process engineers and scientists alike with a bewildering array of independent and semi-independent parameters that can in many cases only be optimized by trial and error. Furthermore, as most parameters are outside of individual control, predictability and consistency of the end product remain difficult to achieve. The traditional wine sciences of viticulture and oenology have been accumulating data sets and generating knowledge and know-how that has resulted in a significant optimization of the vine growing and wine making processes. However, much of these processes remain based on empirical and even anecdotal evidence, and only a small part of all the interactions and cause-effect relationships between individual input and output parameters is scientifically well understood. Indeed, the complexity of the process has prevented a deeper understanding of such interactions and causal relationships. New technologies and methods in the biological and chemical sciences, combined with improved tools of multivariate data analysis, open new opportunities to assess the entire vine growing and wine making process from a more holistic perspective. This review outlines the current efforts to use the tools of systems biology in particular to better understand complex industrial processes such as wine making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.