Abstract
Two cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018; 175:93–112, 2020). Vertical profiles of Reynolds stresses and heat flux show closely horizontally homogeneous behaviour over a streamwise fetch of more than eight boundary-layer heights. However, profiles of mean temperature and velocity show closely horizontally homogeneous behaviour only in the top two-thirds of the boundary layer. In the lower one-third the temperature decreases with fetch, directly as a consequence of heat transfer to the surface. A weaker effect is seen in the mean velocity profiles, curiously, such that the gradient Richardson number is invariant with fetch, while various other quantities are not. Stability leads to a ‘blocking’ of vertical influence. Inferred aerodynamic and thermal roughness lengths increase with fetch, while the former is constant in the neutral case, as expected. Favourable validation comparisons are made against two sets of local-scaling systems over the full depth of the boundary layer. Close concurrence is seen for all stable cases for z/L < 0.2, where z and L are the vertical height and local Obukhov length, respectively, and over most of the layer for some quantities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.