Abstract

In this paper, the first experimental results of tests with a new model support designed for simulations of high frequency and high amplitude pitching maneuvers are presented. A generic missile model with a blunt nose was used for which static test data from earlier experiments with a conventional model support were existing. At the beginning, static tests were done for comparison purposes to judge the influence of the new setup (model support, sting for the model, pivot arm) on the measured forces and moments. Afterwards, dynamic tests with sine oscillations at frequencies of $$f_{\rm a}=0.05\ldots 4\,\hbox{Hz}$$ and angles of attack varying between $$\alpha = 0^{\circ} \ldots 45^{\circ}$$ were performed. Beside the qualification of this new test rig, the tests were used to study the “Phantom Yaw Effect” and to prove an interactive method of its control. This phenomenon is characterized by unwanted yawing moments resulting from asymmetric vortices which can occur on slender bodies at high angles of attack. In the tests, a lee-vortex control device with symmetrically arranged longitudinal slot nozzles producing “air-jet strakes” was demonstrated to decrease the yawing moments both under static and dynamic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.