Abstract

Traditional wearable tactile displays transfer information through a firm contact between the tactile stimulator (tactor) and the skin. The firm contact, however, might limit the location of wearable tactile displays and might be the source of discomfort when the skin is being exposed to prolonged contact. This motivated us to find a non-contact wearable tactile display, which is able to transfer information without a contact. Based on the literature review, we concluded that we should focus on airflow-based tactile displays among various non-contact stimulation methods. In my previous work, I proposed the concept of a non-contact wearable tactile display using airflows and explored its feasibility. Focusing on an airflow-based wearable tactile display, I am investigating the expressivity and the feasibility of wearable airflow displays in real-world environments. I expect my dissertation will provide empirical grounds and guidelines for the design of an airflow-based wearable tactile display.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.