Abstract

This paper proposes a deep recurrent neural network (DRNN) approach to model the one-hour-ahead wind speed forecasting by using various meteorological sensory data from the North Wyke farm platform (NWFP). To refine model input, mutual information analysis is applied to eliminate irrelevant sensory data. The DRNN architecture employs three recurrent layers Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and simple Recurrent Neural Network (RNN) to capture temporal relationships. The proposed networks are tested using real-life, one-year data from the NWFP. The results showed a strong correlation between the actual and predicted wind speed for LSTM, GRU, and RNN layers-based DRNN, however, simple RNN slightly outperformed the other two recurrent layers. The distribution of the network errors over the year is also analyzed. Although the observed meteorological data between the years was from different distributions, the proposed network generalized well even though these data were altered due to global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.