Abstract

This study investigates the impact of wind shear on the flight dynamics of commercial aircraft where C* and C*U control laws are employed during the approach phase. Given the high incidence of flight accidents during takeoff and landing attributed to wind shear, this research aims to enhance aviation safety by analyzing control law behavior under varying wind shear conditions. A nonlinear flight simulation model was developed, utilizing aerodynamic and engine data from a B737, to explore the aircraft’s response to different wind shear intensities. The simulation analysis was used to compare the response of the aircraft with C* and C*U controllers, respectively, under different wind shear, and to evaluate the effectiveness of its stability enhancement in wind shear. It was found that in most cases, the controller can achieve a good stabilization effect, but in some cases of wind fields, the aircraft suffered more significant oscillation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.