Abstract

It is necessary to study different aspects of renewable energy generation, including wind energy. Wind power is one of the most important green and renewable energy resources. The estimation of wind energy generation is a critical task that has received wide attention in recent years. Different machine learning models have been developed for this task. In this paper, we present an efficient forecasting model using naturally inspired optimization algorithms. We present an optimized dendritic neural regression (DNR) model for wind energy prediction. A new variant of the seagull optimization algorithm (SOA) is developed using the search operators of the Aquila optimizer (AO). The main idea is to apply the operators of the AO as a local search in the traditional SOA, which boosts the SOA’s search capability. The new method, called SOAAO, is employed to train and optimize the DNR parameters. We used four wind speed datasets to assess the performance of the presented time-series prediction model, called DNR-SOAAO, using different performance indicators. We also assessed the quality of the SOAAO with extensive comparisons to the original versions of the SOA and AO, as well as several other optimization methods. The developed model achieved excellent results in the evaluation. For example, the SOAAO achieved high R2 results of 0.95, 0.96, 0.95, and 0.91 on the four datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.