Abstract
Directional dispersal by wind and other dispersal agents may generate spatial patterns in passively dispersing metacommunities which cannot be detected by classical eigenvector methods based on Euclidean distances. We analysed zooplankton communities (Rotifera, Cladocera, Copepoda) in a cluster of soda pans distributed over a short spatial scale of 18 km and tested explicitly for directional signals in their spatial configuration. The study area is exposed to a prevailing northwestern wind direction. By applying asymmetric eigenvector maps (AEM), we were able to identify corresponding directionality in the spatial structure of communities. Furthermore, the match between community composition and environmental conditions exhibited a spatial pattern consistent with the prevailing wind corridor, with best match found downwind the dominant wind direction. We also found that classical eigenvector methods based on Euclidean distances underestimated the role of spatial processes in our data. Our study furthermore shows that dispersal limitation may constrain community assembly in highly mobile organisms even at spatial scales below 5 km.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.