Abstract

Resonant scattering of weak coherent laser pulses on a single two-level system realized in a semiconductor quantum dot is investigated with respect to a time delay between incoming and scattered light. This type of time delay was predicted by Wigner in 1955 for purely coherent scattering and was confirmed for an atomic system in 2013 [R. Bourgain etal., Opt. Lett. 38, 1963 (2013)OPLEDP0146-959210.1364/OL.38.001963]. In the presence of electron-phonon interaction, we observe deviations from Wigner's theory related to incoherent and strongly non-Markovian scattering processes which are hard to quantify via a detuning-independent pure dephasing time. We observe detuning-dependent Wigner delays of up to 530ps in our experiments which are supported quantitatively by microscopic theory allowing for pure dephasing times of up to 950ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.