Abstract

Shows how for classical canonical transformations the authors can pass, with the help of Wigner distribution functions, from their representation U in the configurational Hilbert space to a kernel K in phase space. The latter is a much more transparent way of looking at representations of canonical transformations, as the classical limit is reached when h(cross) to 0 and the successive quantum corrections are related with the power of h(cross)2n, n=1,2, et seq.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.