Abstract
We calculate the transition temperature in ultranarrow superconducting wires as a function of wire width, resistance and applied magnetic field. We compare the results of first-order perturbation theory and the non-perturbative resummation technique developed by Oreg and Finkel'stein. The latter technique is found to be superior as it is valid even in the strong disorder limit. In both cases the predicted additional suppression of the transition temperature due to the reduced dimensionality is strongly dependent upon the boundary conditions used. When we use the correct (zero-gradient) boundary conditions, we find that theory and experiment are consistent, although more experimental data is required to verify this systematically. We calculate the magnetic field dependence of the transition temperature for different wire widths and resistances in the hope that this will be measured in future experiments. The predicted results have a rich structure - in particular we find a dimensional crossover which can be tuned by varying either the width of the wire or its resistance per square.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.