Abstract

The magnitude of global cooling during the Last Glacial Maximum (LGM, the coldest multimillennial interval of the last glacial period) is an important constraint for evaluating estimates of Earth's climate sensitivity1,2. Reliable LGM temperatures come from high-latitude ice cores3,4, but substantial disagreement exists between proxy records in the low latitudes1,5-8, where quantitative low-elevation records on land are scarce. Filling this data gap, noble gases in ancient groundwater record past land surface temperatures through a direct physical relationship that is rooted in their temperature-dependent solubility in water9,10. Dissolved noble gases are suitable tracers of LGM temperature because of their complete insensitivity to biological and chemical processes and the ubiquity of LGM-aged groundwater around the globe11,12. However, although several individual noble gas studies have found substantial tropical LGM cooling13-16, they have used different methodologies and provide limited spatial coverage. Here we use noble gases in groundwater to show that the low-altitude, low-to-mid-latitude land surface (45degrees south to 35degrees north) cooled by 5.8±0.6degrees Celsius (mean±95% confidence interval) during the LGM. Our analysis includes four decades of groundwater noble gas data from six continents, along with new records from the tropics, all of which were interpreted using the same physical framework. Our land-based result broadly supports a recent reconstruction based on marine proxy data assimilation1 that suggested greater climate sensitivity than previous estimates5-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.