Abstract

Myopia has become the major cause of visual impairment worldwide. Although the pathogenesis of myopia remains controversial, proteomic studies suggest that dysregulation of retinal metabolism is potentially involved in the pathology of myopia. Lysine acetylation of proteins plays a key role in regulating cellular metabolism, but little is known about its role in the form-deprived myopic retina. Hence, a comprehensive analysis of proteomic and acetylomic changes in the retinas of guinea pigs with form-deprivation myopia was performed. In total, 85 significantly differential proteins and 314 significantly differentially acetylated proteins were identified. Notably, the differentially acetylated proteins were markedly enriched in metabolic pathways such as glycolysis/gluconeogenesis, the pentose phosphate pathway, retinol metabolism, and the HIF-1 signaling pathway. HK2, HKDC1, PKM, LDH, GAPDH, and ENO1 were the key enzymes in these metabolic pathways with decreased acetylation levels in the form-deprivation myopia group. Altered lysine acetylation of key enzymes in the form-deprived myopic retina might affect the dynamic balance of metabolism in the retinal microenvironment by altering their activity. In conclusion, as the first report on the myopic retinal acetylome, this study provides a reliable basis for further studies on myopic retinal acetylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.