Abstract

Semantic segmentation is widely applied in autonomous driving, in robotic picking, and for medical purposes. Due to the breakthrough of deep learning in recent years, the fully convolutional network (FCN)-based method has become the de facto standard in semantic segmentation. However, the simple FCN has difficulty in capturing global context information, since the local receptive field is small. Furthermore, there is a problem of low image resolution because of the existence of the pooling layer. In this paper, we address the shortcomings of the FCN by proposing a new architecture called WideSegNeXt, which captures the image context on various spatial scales and is effective in identifying small objects. In addition, there is little loss of position information, since there are no pooling layers in the structure. The proposed method achieves a mean intersection over union (MIoU) of 72.5% and a global accuracy (GA) of 92.4% on the CamVid dataset and achieves higher performance than previous methods without additional input datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.