Abstract

A widely linear quaternion-valued least-mean kurtosis (WL-QLMK) algorithm is introduced for adaptive filtering of quaternion-valued circular and noncircular signals. In the design, kurtosis-based cost function is first defined in the quaternion domain by integrating the widely linear model, and augmented statistics, and then minimized using the recently developed generalized Hamilton-real (GHR) calculus. In this way, the novel WL-QLMK algorithm is obtained for training quaternion-valued adaptive filter structures. Furthermore, its steady-state performance is theoretically analyzed to determine the bounds of the step size, which provides a theoretical justification for simulations. The simulation results over both benchmark system identification scenarios, and one-step-ahead predictions of real-world 4D pathological resting tremors show that the proposed WL-QLMK algorithm, by virtue of its newly defined cost function, significantly enhances the performance compared to the recently developed quaternion-valued algorithms, especially for noncircular signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.