Abstract

This paper presents a wideband fully differential current driver architecture suitable for bioimpedance measurements. It uses an improved regulated cascode to enhance output impedance, enabling accurate measurements of transfer impedances at low and high frequencies. The current driver architecture maximizes the output voltage swing. An independent reference voltage is used in order to compensate the process variations of the output common mode voltage. The circuit was designed in 0.18μm CMOS AMS process, operating from 1.8V supply voltage. The silicon area is 0.26 mm2. The current driver has a 67 MHz bandwidth and can provide a maximum output current of 600 μA peak to peak with a Total Harmonic Distortion (THD) below 0.3% at low frequencies increasing to 0.6% at 8 MHz. Due to the use of regulated cascodes in the output stage, the circuit achieves a 79MΩ output impedance at low frequencies decreasing to 324KΩ at 1MHz, with an output voltage swing of 0.95 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.