Abstract

A wideband dual-layer Huygens’ unit cell based on offset electric dipole pair (OEDP) is proposed. Different from traditional designs with a combination of electric and magnetic polarizabilities, the proposed Huygens’ unit cell exclusively employs electric polarizabilities. By doing so, it practically avoids the unbalanced resonant frequencies between the two polarizabilities, thereby achieving wideband transmission. Based on the proposed unit cell, a wideband and high-gain multibeam array antenna is developed. First, a Rotman lens is designed by using a substrate-integrated waveguide (SIW) technology. Then a parallel-fed slot antenna array is connected to the Rotman lens to generate multiple beams. Without using a series-fed slot antenna array, the multibeam array antenna based on Rotman lens can operate within a relatively wide bandwidth (28–32 GHz). Second, a wideband dual-layer Huygens’ metasurface is developed that serves as a superstrate of the multibeam array antenna for increasing the antenna gain further. A wideband and high-gain multibeam array antenna is finally realized, which is comprised of a Rotman lens, a parallel-fed slot antenna array, and a Huygens’ metasurface. To verify the performance of this design, a prototype is fabricated and its measured results are compared to the simulated counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.